a2 United States Patent
Miller et al.

US009405486B2

US 9,405,486 B2
Aug. 2, 2016

(10) Patent No.:
(45) Date of Patent:

(54) FRACTAL LAYOUT OF DATA BLOCKS
ACROSS MULTIPLE DEVICES

(71) Applicant: PURE Storage, Inc., Mountain View,
CA (US)

(72) Inventors: Ethan Miller, Santa Cruz, CA (US);
John Colgrove, Los Altos, CA (US);
John Hayes, Mountain View, CA (US);
Cary Sandvig, Palo Alto, CA (US)

(73) Assignee: Pure Storage, Inc., Mountain View, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

(21) Appl. No.: 14/243,421

(22) Filed: Apr. 2,2014
(65) Prior Publication Data
US 2014/0215155 Al Jul. 31,2014

Related U.S. Application Data

(63) Continuation of application No. 13/421,336, filed on
Mar. 15, 2012, now Pat. No. 8,719,540.

(51) Int.CL
GOGF 12/00 (2006.01)
GOGF 3/06 (2006.01)
GOGF 12/10 (2016.01)
GOGF 12/06 (2006.01)
GOGF 12/02 (2006.01)
(52) US.CL
CPC oo GOGF 3/0665 (2013.01); GOGF 3/061

(2013.01); GOGF 3/0619 (2013.01); GO6F
3/0689 (2013.01); GO6F 12/00 (2013.01);
GO6F 12/0292 (2013.01); GO6F 12/06

Network Architecture 400 -

Client Computer

System 410b

Client Computer

System 410a

(2013.01); GOGF 12/10 (2013.01); GO6F
12/1009 (2013.01); GOGF 12/1027 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,890,204 A 3/1999 Ofer et al.
5,951,687 A 9/1999 Chan et al.
6,347,366 Bl 2/2002 Cousins
6,377,939 Bl 4/2002 Young
(Continued)
OTHER PUBLICATIONS

“Performance and Capacity Planning Solutions;” Compaq Computer
Corporation, May 1999, retrieved from <ftp://ftp.hp.com/%2F/pub/
alphaserver/archive/DECinfo/info_ 3/infosheet/Performance
and_ Capacity_ Plann_ 14mayl1999LIWOLXPF.pdf> on Jun. 4,
2013; pp. 1-4.

Primary Examiner — Midys Rojas
(74) Attorney, Agent, or Firm — Edward J. Lenart; Kennedy
Lenart Spraggins LL.P

(57) ABSTRACT

A system, method, and computer-readable storage medium
for mapping block numbers within a region to physical loca-
tions within a storage system. Block numbers are mapped
within a region according to a fractal-based space-filling
curve. If the region is not a 2* by 2* square, then the region is
broken up into one or more 2* by 2* squares. Any remaining
sub-region is centered within a 2¥ by 2* square, the 2* by 2*
square is numbered using a fractal-based space-filling curve,
and then the sub-region is renumbered by assigning numbers
based on the order of the original block numbers of the sub-
region.

17 Claims, 18 Drawing Sheets

Internet 460 i

Client Computer
System 410¢
7 Switch 440

Switch 450 /

Network

Memory Storage Subsystem 470
Medium 430
Bass 08 432 Storage Controller 474
o e R Deduplicati Global Q
Storage | | Storage Voo 472 | edupiication | [lobal
Asray Array Manager 43¢ 478 Scheduier(s) 434
4208 420b
Processor Storage Storage Storage i
422 Device Device | - - - | Device Devica

Group
473m

Interface

Device Group 473a

US 9,405,486 B2

Page 2
(56) References Cited 8,719,540 Bl 5/2014 Miller et al.
2002/0128815 Al 9/2002 Merchant et al.
U.S. PATENT DOCUMENTS 2002/0129216 Al 9/2002 Collins
2002/0198888 Al 12/2002 Young
6,519,679 B2 2/2003 Devireddy et al. 2003/0033398 Al 2/2003 Carlson et al.
6,538,669 Bl 3/2003 Lagueux, Jr. et al. 2003/0046270 Al 3/2003 Leung et al.
6,542,972 B2 4/2003 Ignatius et al. 2003/0074235 Al 4/2003 Gregory
6.629.158 Bl 9/2003 Brant et al 2003/0076349 Al 4/2003 Slaby
P 2005/0015407 Al 1/2005 Nguyen et al.
2’32‘1";% g} légggz 5;135? 2006/0006905 Al 1/2006 Chou et al.
] k) *
7017023 Bl 32006 Knight 2013/0042052 Al* 2/2013 Colgrove G06F7?/10/?8§
7,069.410 B2 6/2006 McBrearty et al. 2014/0195755 A1* 72014 Col al 711/162
7,275,142 Bl 9/2007 Schultz et al. OIBIOVE CLAL e
7,293,237 B1 11/2007 Knight et al. * cited by examiner

U.S. Patent

US 9,405,486 B2

Aug. 2, 2016 Sheet 1 of 18
storage Storage Storage
Device Device Device
100A 1008 100C
Region Region Region
102A 1028 102C

Storage
Device
100D

FIG. 1

{(Prior Arf)

Region
1020

US 9,405,486 B2

Sheet 2 of 18

Aug. 2, 2016

U.S. Patent

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

{ ¢
3
1 o 3
g
M m.w w e e <t i ;
; <y e <« = b ”
3 &.w kwd !
i X %y
@f \m
pUTTTmmmmm T mmm e N
b :
¢
: mu m,,m o0 > & A :
) ki = :
¢ agene L}
i Y]
ﬂf %m
pUTTTEEEEEmmmmmm e m e m N
¢ 3
L S m “
T <+ o) © - w
§ ﬁ 3
£ e il 3
i [7 i
ml. .\n
pTT T ETEmemEmmmmmm e e mm N
P :
P2 < ;
i oy o <« 4 ap] :
S o] 3
¥ v 5
I :
ﬂvp \m

FIG. 2

{(Prior Art)

US 9,405,486 B2

Sheet 3 of 18

Aug. 2, 2016

U.S. Patent

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

%
e 3
o L " ”
= by
23 S i~ - - m
T Z]

K

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE M

-
Q& - <F “
1
v 7]
K

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS w
[

me “ ;
= i
Ay 3
J

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii M
-

5 S <]
1
m.unu L 3 o0 - w
R1 4 w
:

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

FIG. 3
{Prior Arl)

US 9,405,486 B2

Sheet 4 of 18

Aug. 2, 2016

U.S. Patent

vy ol
BT/ dnoady anaag) muwmwg
T YIOMIBN
dnousy { - 7 wgly qglv 2P
BOIAB(] S0IAB(ST - Ty S0IAR(] 77T
| sbeioig obziog sbeioyg J0§$300.]
po——— o ¥CF sobeurpy
PLP (SUOINDOYLS 8iy S v ME:B\; W
O/} 1egoD LOgERYdNpa(] oLy —
W
FIF syonuon sbeiwng
0Ly winipapy
07% wesAsgng ebeiols AIDUIBIA
0GF Mg

/
!
/

qnzy E0cy

Reuy Aziry
afeinig abeiolg

ger] g2ed

6% \ 19 el - =
HIOMIBN " .‘ osp
HIOMISN

GOTT WasAg
wmindwen wenn

GOTE weshAs

: endwony s

L &
' BOF 1eweiu) /

BOTT wolshy
senduwos Jusayn

e (0P 8Osy oMmIeN

US 9,405,486 B2

Sheet 5 of 18

Aug. 2, 2016

U.S. Patent

g e e cnm o e n i wn g o on n n xR R o

o

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

%
ot §
n\.u ¢
.WE Ty o o < ;
enu ol ol ol Kl f
— :
¥ i
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii \m
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii s
& 0O :
§
o £ -2 | oo M
o =2 M
1 d :
\n
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii .
o :
m..ug §
&5 o T e (N Pt (O “
eai M
i :
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii .\M
A
i»
o~ 3
G <L ;
9% o o - 1o M
eai M
. “

FIG. 5

US 9,405,486 B2

Sheet 6 of 18

Aug. 2, 2016

U.S. Patent

04
B&Y

b
£8Y

v
6LY

G4
GLY

029
a0ina(]

£l
LY

ri
[} -4

Gig
83AB(T

0L9
B0IAS(]

G09
eoina(]

9 Oid

GLy-029d G 0G 120001 0%X0
COV-GLad vi Oy L0001 0X0
LiV8i8d £t QL LCO00LOX0
6Ly-0280 Gl 02LC000L0X0
£8Y-029d Li 0L 120001 0X0
86V 09U 04 00LE000L0X0
SLVGL80 8 060C000L0X0
yayGied g 0B0CO00L0X0
LIYVOLSd Z 0.L02000L0X0
cLY-0i90 9 08020001 0X0
SOVG08d g 0GOCO00L0X0
yOY- G080 ¥ OrQE000 L 0X0
E0v G080 £ 0E0CO00L0X0
OLy-0Lad 4 0202000 L 0X0
60Y-0L90 £ OLOZO00LOX0
Z0v-e08d 0 000C000 L 0X0
v NGO yA
¢
(T

siqe; Buiddewy

U.S. Patent Aug. 2, 2016 Sheet 7 of 18 US 9,405,486 B2

0 3 4 5 | b8 | 59 | 60 | 63

1 P 7 B | 57 | 56 | 61 | B2

14 1 13 | 8 9 | 54 {55 50| 48

15112 111 10 1 B3 1 52 1 51 | 48

16 {17 1 30 | 311 32 | 33 | 46 | 47

19118 1 20 1 28 | 351 34 | 45 | 44
20 123 124 1 27 1 36 39 40 | 43
21 122 125 126 | 37 | 38 | 41 | 42

FIG. 7

U.S. Patent

Aug. 2, 2016 Sheet 8 of 18

8085
J

}

return d;

Heonverl {(x,y) to d
int xy2d {int n, int x, ink vy} {

nt e, ry, s, d=0;
for (s=n/2; 8>0; s/=2}{ =ty =
rk={x&s)> 0
ry = {y &s)> 0
d+=s*s* ({3%x)* ry); ry=1&{t"rx);
rol{s, &x, &y, rx, ry);

US 9,405,486 B2

{ /= 4;

f—

liconvert d io (x,v)
void dZxy{int n, int d, int ™%, int "y} {
int o, ry, s, =g

for (s=1; s<n; 8"=2) {
x =1 & {2y

Fob{s, X, v, I, Iy}
WA=
RAGERMU?

815
P

ffrotate/flip a guadrant appropriately
void rot(ind n, int ®x, int "y, intrx, int ey} {
ntL
i (ry == 0){
if (rx == 1}{
K=a-1-7y
vy = n-1-"y,

FIG. 8

U.S. Patent

Aug. 2, 2016 Sheet 9 of 18

10 11 12 15
9 & 13 14
& 7 2 1

5 4 3 ¢

FIG. 9

US 9,405,486 B2

U.S. Patent Aug. 2, 2016 Sheet 10 of 18 US 9,405,486 B2

fffffffff Method 1000

(Start - Generate Layout)

1005 —
Determine the Size of the Region

¥

1070 — | Ulilize a Hilbert Space-Filling Curve
to Traverse the Region

v

1015 | Number the Blocks based on the
Hilbert Space-Filling Curve Path

v

1020 Store the Rlock Numbers in a
Mapping Table

(End ~ Generale Fractal Layout)

FiG. 10

U.S. Patent Aug. 2, 2016 Sheet 11 of 18 US 9,405,486 B2

1100
/“\)
Ve \\‘
1105 1110
s .- AN .
f
i
\ \(‘/‘/ / \; ‘\”/’ /
1115 1120

FiG. 11

U.S. Patent Aug. 2, 2016 Sheet 12 of 18 US 9,405,486 B2

1205

AN

1120

FIG. 12

U.S. Patent Aug. 2, 2016 Sheet 13 of 18
1205
/ \
0 3 4 & 58 | 59 { 60 | B3
1 2 7 8 57 | 58 | 61 | 82
14 113 8 9 54 | 55 § 50 | 49
15 112 | 11 11 53 § 521581148
16 17 1301311324 33146 47
19 118 1 28 1 28 1 35 § 34 | 45 | 44
20123 12441 27 1361381 40} 43
21 122125 1 28 1 37§ 38 { 41 | 42
N
1120

FIG. 13

US 9,405,486 B2

US 9,405,486 B2

U.S. Patent Aug. 2, 2016 Sheet 14 of 18
1205
- AN
{/
3 3 4 4] 53 { B9 | 80 63
X 1 2 3 44 1 45 | 48 X
1 2 7 3] 57 { 56 | 61 62
X 0 5 4 43 | 42 | 47 X
14 13 8 9 54 {1 55 | B 49
X 11 & 7 40 1 41§ 3B X
15 12 1 1M B3 52§ 81 48
X 10 G 8 3¢ § 381 37 X
16 17 1 30 § 31 32 { 33§ 486 47
X 1212212341241 251435 X
19 181291281 381 34 4§ 45 44
X 131211201 27 1 261 34 X
20 23 124 {27 1 36§ 39 | 40 43
X B P16 1 191 281 31§ 32 X
21 22 1 25 1 26 1 37 {1 38 | 41 42
X 4117 §18 1291 30 ¢ 33 X
:\\ \//,
1120

FIG. 14

U.S. Patent

Aug. 2, 2016 Sheet 15 of 18
1 2 3 44 | 45 § 46
th; 5 4 43 1 42 § 47
11 3] 7 40 | 41 36
10 Q 8 39 | 38 § 37
12 122 1231 24 1251 35
13 | 21 20 1 27 1 26 § 34
158 1 16 1 16 1 28 | 31 32
14 117 1 18 1 20 1 30§ 33
1120

FIG. 15

US 9,405,486 B2

U.S. Patent

Aug. 2, 2016

Sheet 16 of 18

1605
A

US 9,405,486 B2

1100

14

15

16

19

20

21

234

235

236

239

240

241

254

255

13

12

17

18

23

22

233

232

237

238

243

242

253

252

11

30

29

24

25

230

231

226

225

244

247

248

251

10

31

28

27

26

229

228

227

224

245

246

249

250

58

57

53

32

35

36

37

218

219

220

223

202

201

198

197

59

56

55

52

33

39

38

217

216

221

222

203

200

199

196

60

61

50

51

46

45

40

41

214

215

210

208

204

205

14

195

63

62

49

48

47

43

42

213

212

211

208

207

206

193

192

67

68

69

122

123

124

127

128

131

132

133

186

187

188

191

65

66

7

70

121

120

125

126

129

130

135

134

185

184

189

190

78

77

72

73

118

118

114

113

142

141

136

137

182

183

178

177

79

76

75

74

117

116

115

112

143

140

139

138

181

180

179

176

80

81

g5

96

97

110

111

144

145

158

159

160

161

174

175

83

82

93

92

99

98

109

108

147

146

157

156

163

162

173

172

87

88

91

100

103

104

107

148

151

152

155

164

167

168

171

85

86

89

90

101

102

105

106

149

150

153

154

165

166

169

170

FIG. 16

U.S. Patent

Aug. 2, 2016 Sheet 17 of 18 US 9,405,486 B2
1100
] 7 a 11 12 1 13 {168 1167 116811711172
5 4 3 W18 1 14 (1658116411681 1701173
{ 3 22§ 21 16 1 17 1162 {16831 1581 157 | 174
1 2 23 1201194 18 1181116011588 11561175
46 { 45 24 § 27 1 28 + 29 (150118111821 155} 136
47 | 44 § 25 1 26 | 31 § 30 11481148 11531154 137
42 143 1 38§ 37 1 32 1 33 1146114711421 1411138
41 140 § 38§ 36 | 35 § 34 [1451441143 {140} 139
48 149 1 00 1 91 1 92 1 95§ 96 1 99 110011011135
51 1501 82 {8 93194 97 1 08 110311021134
52 183 1861 87 1 82 1 81 111011091104 11051133
55 1 54 1 85 1 84 | 83 1 BO 111111081107 11061132
G2 1 63 1684 185 78179 112111311261 127 1128
1160167 {66 § 77 1 760 1 115111411251 124 1120
55 1501681 711 72175 111611198120 11231 130
BY 1 88 168 {1 701 73 1 74 {117 1181121 11221 131

FIG. 17

U.S. Patent Aug. 2, 2016 Sheet 18 of 18 US 9,405,486 B2

~— Methad 1800
¥

(Start ~ Mapping Block Numbers)

Determine the Size of the Region

- 1815

Map Block Numbers
Ulilizing a Fractal-Based
Space-Filling Curve

Yes
Square?

1820 | position the Region within a 2 by 2°
Square

!

1895 Gen'er'af'e INumberS for the Biocks of
© Mthe 27 by 2" Sguare Utilizing a Fractal-
Based Space-Filling Curve

v

1830 | Discard the Biocks of the 2" by 2°
V' Sguare Cutside of the Centersd
Region

¥

1835 — |Renumber the Blocks of the Centered
\ Region hased on the Original
Numbering

é«@
18640 N Store the Block Numbers in One or
More Mapping Tables

‘

C End - Mapping Block Numbers)

FIG. 18

US 9,405,486 B2

1
FRACTAL LAYOUT OF DATA BLOCKS
ACROSS MULTIPLE DEVICES

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/421,336, entitled “FRACTAL LAYOUT OF
DATA BLOCKS ACROSS MULTIPLE DEVICES”, filed
Mar. 15, 2012, the entirety of which is incorporated herein by
reference.

BACKGROUND

1. Field of the Invention

This invention relates to storage systems and, more par-
ticularly, to mapping data blocks across multiple storage
devices.

2. Description of the Related Art

Storage systems store and retrieve data in response to
input/output (I/0) requests received from the clients. Storage
systems often include physical volumes, which may be actual
physical storage devices, such as hard disks, solid-state
devices, storage devices using another storage technology, or
partitions of a storage device. Software applications, such as
logical volume managers or disk array managers, provide a
means of allocating space within a storage system. Storage
virtualization may be utilized within a storage system to
provide an abstraction of logical storage from physical stor-
age in order to access logical storage without end-users iden-
tifying physical storage.

To support storage virtualization, a volume manager per-
forms /O redirection by translating incoming I/O requests
using logical addresses from end-users into new requests
using addresses associated with physical locations in the stor-
age devices. Mapping tables may be utilized to perform the
1/0 redirection by mapping from block numbers in a logical
address space to physical locations within the storage
devices.

Referring now to FIG. 1, four storage devices 100A-D are
shown. These storage devices may be part of a storage sub-
system, and the storage subsystem may be utilized by any
number of clients. Each storage device 100A-D includes a
corresponding region 102A-D, respectively. Each region may
bealogical address space that maps to a corresponding physi-
cal address space that may be utilized for storing data.

Turning now to FIG. 2, one prior art approach for mapping
virtual block numbers to a plurality of storage devices is
shown. Virtual block numbers are generated for the virtual
blocks of regions 102A-D of storage devices 100A-D of FIG.
1. It is noted that “virtual block numbers” may be referred to
as “block numbers” and “virtual blocks” may be referred to as
“blocks” herein. In the example shown, consecutive blocks
are mapped to the same region, such that blocks 0-3 are
mapped to region 102A, blocks 4-7 are mapped to region
102B, blocks 8-11 are mapped to region 102C, and blocks
12-15 are mapped to region 102D. This mapping scheme
assigns blocks such that consecutive blocks are stored on the
same storage device. This may ensure good sequential read
performance, but limits the amount of parallelism used until
the I/O request size is very large. For example, a request for
six blocks would likely involve only two storage devices,
though it could involve a third in some cases (e.g., blocks
3-8).

Turning now to FIG. 3, another prior art approach for
mapping block numbers to a plurality of storage devices is
shown. In this approach, block numbers are generated such
that consecutive blocks are stored on different storage
devices. 1/O requests that involve multiple sequential blocks
are guaranteed to use different devices, increasing the amount

10

15

20

25

30

35

40

45

50

55

60

65

2

of parallel accesses to storage. However, in some cases, there
may be too much parallelism in the resultant I/O requests. For
example, any request of four or more blocks would involve all
four storage devices. As a result, too many separate 1/O
requests may be generated.

1/0 system designers often want the number of storage
devices used for an I/O request to increase as the size of the
request increases, but not as fast as would be the case using the
layout shown in FIG. 3. In view of the above, improved
systems and methods for mapping block numbers to storage
devices are desired.

SUMMARY OF EMBODIMENTS

Various embodiments of a computer system and methods
for mapping block numbers to a storage system are contem-
plated. Block numbers are generated for blocks in a region
that spans multiple storage devices such that smaller I/O
requests require access to a few storage devices while larger
requests require access to progressively more storage devices.
A fractal layout may be utilized to layout blocks within the
region and generate the corresponding block numbers. In one
embodiment, the fractal layout may be based on a Hilbert
space-filling curve. In other embodiments, other space-filling
curves (e.g., a Morton curve) may be utilized.

In some embodiments, the region corresponding to the
storage system may be a 2% by 2* square region, wherein k is
apositive integer greater than one. In other embodiments, the
region may not be a 2* by 2* square region. In these embodi-
ments, the region may be broken up into smaller 2* by 2%
square regions. Each of the smaller 2% by 2* square regions
may be numbered using a fractal-based space-filling curve.
Any remaining portion of the overall region that is not a 2 by
2% square region may be positioned within a 2* by 2* square
region. In one embodiment, the remaining portion may be
centered within the 2% by 2* square region. The blocks of the
2% by 2* square region may be numbered as usual using the
fractal-based space-filling curve, and then the blocks within
the leftover portion may be renumbered based on the original
numbering scheme.

Each block of the leftover portion may have a initial num-
ber based on the fractal-based space-filling curve numbering
of the entire 2% by 2* square region. In one embodiment, the
blocks of the leftover portion may be renumbered based on
these initial numbers. The block with the lowest initial num-
ber within the leftover portion may be renumbered to ‘0’, the
block with the next lowest initial number within the leftover
portion may be renumbered to ‘1°; and so on until the highest
initial number within the leftover portion is renumbered to
‘M-1’, wherein ‘M’ is the number of blocks within the left-
over portion.

These and other embodiments will become apparent upon
consideration of the following description and accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a generalized block diagram illustrating one
embodiment of four storage devices.

FIG. 2 is a generalized block diagram of one embodiment
of a prior art approach for mapping block numbers to a plu-
rality of storage devices.

FIG. 3 is a generalized block diagram of one embodiment
of another prior art approach for mapping block numbers to a
plurality of storage devices.

FIG. 4 is a generalized block diagram of one embodiment
of a network architecture.

US 9,405,486 B2

3

FIG. 5 is a generalized block diagram illustrating one
embodiment of a fractal-based mapping approach.

FIG. 6 is a generalized block diagram of one embodiment
of'a mapping table and corresponding storage.

FIG. 7 is a generalized block diagram of one embodiment
of'an 8x8 block layout.

FIG. 8 is a generalized block diagram of one embodiment
of an algorithm for generating a space-filling curve.

FIG. 9 illustrates one embodiment of the numbering of
blocks within a 4x4 square region.

FIG. 10 is a generalized flow diagram of one embodiment
of'a method for generating a fractal layout of block numbers
for a region utilizing a Hilbert space-filling curve algorithm.

FIG. 11 is a generalized block diagram of one embodiment
of a rectangular region.

FIG. 12 is a generalized block diagram illustrating one
embodiment of a layout of a leftover sub-region.

FIG. 13 is a generalized block diagram illustrating one
embodiment of a block numbering scheme based on a Hilbert
space-filling curve.

FIG. 14 is a generalized block diagram illustrating one
embodiment of a leftmost column and a rightmost column
being discarded.

FIG. 15 is a generalized block diagram illustrating one
embodiment of a region with renumbered blocks.

FIG. 16 is a generalized block diagram illustrating another
embodiment of a rectangular region centered within a square
region.

FIG. 17 is a generalized block diagram illustrating one
embodiment of a rectangular region with renumbered blocks.

FIG. 18 is a generalized flow diagram illustrating one
embodiment of a method for mapping block numbers within
a region.

While the invention is susceptible to various modifications
and alternative forms, specific embodiments are shown by
way of example in the drawings and are herein described in
detail. It should be understood, however, that drawings and
detailed description thereto are not intended to limit the
invention to the particular form disclosed, but on the contrary,
the invention is to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the present
invention as defined by the appended claims.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, one having ordinary skill in the art
should recognize that the invention might be practiced with-
out these specific details. In some instances, well-known
circuits, structures, signals, computer program instruction,
and techniques have not been shown in detail to avoid obscur-
ing the present invention. It will be appreciated that for sim-
plicity and clarity of illustration, elements shown in the fig-
ures have not necessarily been drawn to scale. For example,
the dimensions of some of the elements may be exaggerated
relative to other elements.

This specification includes references to “one embodi-
ment”. The appearance of the phrase “in one embodiment” in
different contexts does not necessarily refer to the same
embodiment. Particular features, structures, or characteristics
may be combined in any suitable manner consistent with this
disclosure. Furthermore, as used throughout this application,
the word “may” is used in a permissive sense (i.e., meaning
having the potential to), rather than the mandatory sense (i.e.,
meaning must). Similarly, the words “include”, “including”,
and “includes” mean including, but not limited to.

10

15

20

25

30

35

40

45

50

55

60

65

4

Terminology. The following paragraphs provide defini-
tions and/or context for terms found in this disclosure (includ-
ing the appended claims):

“Comprising.” This term is open-ended. As used in the
appended claims, this term does not foreclose additional
structure or steps. Consider a claim that recites: “A computing
system comprising a data storage controller ” Such a
claim does not foreclose the computing system from includ-
ing additional components (e.g., a network interface, one or
more processors).

“Configured To.” Various units, circuits, or other compo-
nents may be described or claimed as “configured to” perform
a task or tasks. In such contexts, “configured to” is used to
connote structure by indicating that the units/circuits/compo-
nents include structure (e.g., circuitry) that performs the task
ortasks during operation. As such, the unit/circuit/component
can be said to be configured to perform the task even when the
specified unit/circuit/component is not currently operational
(e.g., is not on). The units/circuits/components used with the
“configured to” language include hardware—for example,
circuits, memory storing program instructions executable to
implement the operation, etc. Reciting that a unit/circuit/
component is “configured to” perform one or more tasks is
expressly intended not to invoke 35 U.S.C. §112, sixth para-
graph, for that unit/circuit/component. Additionally, “config-
ured to” can include generic structure (e.g., generic circuitry)
that is manipulated by software and/or firmware (e.g., an
FPGA or a general-purpose processor executing software) to
operate in manner that is capable of performing the task(s) at
issue. “Configured to” may also include adapting a manufac-
turing process (e.g., a semiconductor fabrication facility) to
fabricate devices (e.g., integrated circuits) that are adapted to
implement or perform one or more tasks.

“Based On.” As used herein, this term is used to describe
one or more factors that affect a determination. This term does
not foreclose additional factors that may affect a determina-
tion. That is, a determination may be solely based on those
factors orbased, at least in part, on those factors. Consider the
phrase “determine A based on B.” While B may be a factor
that affects the determination of A, such a phrase does not
foreclose the determination of A from also being based on C.
In other instances, A may be determined based solely on B.

Turning now to FIG. 4, a generalized block diagram of one
embodiment of a network architecture 400 is shown. As
described further below, one embodiment of network archi-
tecture 400 includes client computer systems 410a-4105
interconnected to one another through a network 480 and to
data storage arrays 420a-4205. Network 480 may be coupled
to a second network 490 through a switch 440. Client com-
puter system 410c¢ is coupled to client computer systems
410a-410b and data storage arrays 420a-42056 via network
490. In addition, network 490 may be coupled to the Internet
460 or other networks through switch 450.

It is noted that in alternative embodiments, the number and
type of client computers and servers, switches, networks, data
storage arrays, and data storage devices is not limited to those
shown in FIG. 4. At various times one or more clients may
operate offline. In addition, during operation, individual cli-
ent computer connection types may change as users connect,
disconnect, and reconnect to network architecture 400. Fur-
thermore, while the present description generally discusses
network attached storage, the systems and methods described
herein may also be applied to directly attached storage sys-
tems and may include a host operating system configured to
perform one or more aspects of the described methods.
Numerous such alternatives are possible and are contem-
plated. A further description of each of the components

US 9,405,486 B2

5

shown in FIG. 4 is provided shortly. First, an overview of
some of the features provided by the data storage arrays
420a-4205 is described.

In the network architecture 400, each of the data storage
arrays 420a-4205 may be used for the sharing of data among
different servers and computers, such as client computer sys-
tems 410a-410c. In addition, the data storage arrays 420a-
4205 may be used for disk mirroring, backup and restore,
archival and retrieval of archived data, and data migration
from one storage device to another. In an alternate embodi-
ment, one or more client computer systems 410a-410c¢ may
be linked to one another through fast local area networks
(LANSs) in order to form a cluster. Such clients may share a
storage resource, such as a cluster shared volume residing
within one of data storage arrays 420a-4206.

Each of the data storage arrays 420a-4205 includes a stor-
age subsystem 470 for data storage. Storage subsystem 470
may comprise a plurality of storage devices 476a-476m. Stor-
age devices 476a-476m may provide data storage services to
client computer systems 410a-410c. Each of the storage
devices 476a-476m may use a particular technology and
mechanism for performing data storage. The type of technol-
ogy and mechanism used within each of the storage devices
476a-476m may at least in part be used to determine the
algorithms used for controlling and scheduling read and write
operations to and from each of the storage devices 476a-
476m. For example, the algorithms may locate particular
physical locations corresponding to the operations. In addi-
tion, the algorithms may perform input/output (I/O) redirec-
tion for the operations, removal of duplicate data in the stor-
age subsystem 470, and support one or more mapping tables
used for address redirection and deduplication.

The logic used in the above algorithms may be included in
one or more of a base operating system (OS) 432, a volume
manager 434, within a storage subsystem controller 474,
control logic within each of the storage devices 476a-476m,
or otherwise. Additionally, the logic, algorithms, and control
mechanisms described herein may comprise hardware and/or
software.

Each of the storage devices 476a-476m may be configured
to receive read and write requests and comprises a plurality of
data storage locations, each data storage location being
addressable as rows and columns in an array. In one embodi-
ment, the data storage locations within the storage devices
476a-476m may be arranged into logical, redundant storage
containers or redundant arrays of independent drives (RAID)
for data storage and protection.

In some embodiments, each of the storage devices 476a-
476m may utilize technology for data storage that is different
from a conventional hard disk drive (HDD). For example, one
or more of the storage devices 476a-476m may include or be
further coupled to storage consisting of solid-state memory to
store persistent data. In other embodiments, one or more of
the storage devices 476a-476m may include or be further
coupled to storage using other technologies such as spin
torque transfer technique, magnetoresistive random access
memory (MRAM) technique, shingled disks, memristors,
phase change memory, or other storage technologies. These
different storage techniques and technologies may lead to
differing 1/O characteristics between storage devices.

In one embodiment, the included solid-state memory com-
prises solid-state drive (SSD) technology. A Solid-State Disk
(SSD) may also be referred to as a Solid-State Drive. Without
moving parts or mechanical delays, an SSD may have a lower
read access time and latency than a HDD. However, the write
performance of SSDs is generally slower than the read per-

10

15

20

25

30

35

40

45

50

55

60

65

6

formance and may be significantly impacted by the availabil-
ity of free, programmable blocks within the SSD.

Storage array efficiency may be improved by creating a
storage virtualization layer between user storage and physical
locations within storage devices 476a-476m. In one embodi-
ment, a virtual layer of a volume manager is placed in a
device-driver stack of an operating system (OS), rather than
within storage devices or in a network. Many storage arrays
perform storage virtualization at a coarse-grained level to
allow storing of virtual-to-physical mapping tables entirely in
memory. However, such storage arrays may not be able to
integrate features such as data compression, deduplication
and copy-on-modify operations. Many file systems support
fine-grained virtual-to-physical mapping tables, but they do
not support large storage arrays, such as device groups 473a-
473m. Rather, a volume manager or a disk array manager may
be used to support device groups 473a-473m.

In one embodiment, one or more mapping tables may be
stored in the storage devices 476a-476m, rather than memory,
such as RAM 472, memory medium 430 or a cache within
processor 422. The storage devices 476a-476m may be SSDs
utilizing Flash memory. The low read access and latency
times for SSDs may allow a small number of dependent read
operations to occur while servicing a storage access request
from a client computer. The dependent read operations may
be used to access one or more indexes, one or more mapping
tables, and user data during the servicing of the storage access
request.

In one example, I/O redirection may be performed by the
dependent read operations. In another example, inline dedu-
plication may be performed by the dependent read operations.
In yet another example, bulk array tasks, such as a large copy,
move, or zeroing operation, may be performed entirely within
a mapping table rather than accessing storage locations hold-
ing user data. Such a direct map manipulation may greatly
reduce I/O traffic and data movement within the storage
devices 476a-476m. The combined time for both servicing
the storage access request and performing the dependent read
operations from SSDs may be less than servicing a storage
access request from a spinning HDD.

In addition, the information within a mapping table may be
compressed. A particular compression algorithm may be cho-
sen to allow identification of individual components, such as
a key within a record among multiple records. Therefore, a
search for a given key among multiple compressed records
may occur. In various embodiments the search for a given key
may be performed without decompressing each tuple by com-
paring the compressed representation of the key against the
compressed information stored in the relevant fields of the
tuple. If a match is found, only the matching record may be
decompressed. Compressing the tuples within records of a
mapping table may further enable fine-grained level map-
ping. This fine-grained level mapping may allow direct map
manipulation as an alternative to common bulk array tasks.
Further details concerning efficient storage virtualization will
be discussed below.

Again, as shown, network architecture 400 includes client
computer systems 410a-410¢ interconnected through net-
works 480 and 490 to one another and to data storage arrays
420a-4205. Networks 480 and 490 may include a variety of
techniques including wireless connection, direct local area
network (LAN) connections, wide area network (WAN) con-
nections such as the Internet, a router, storage area network,
Ethernet, and others. Networks 480 and 490 may comprise
one or more LANSs that may also be wireless. Networks 480
and 490 may further include remote direct memory access
(RDMA) hardware and/or software, transmission control

US 9,405,486 B2

7

protocol/internet protocol (TCP/IP) hardware and/or soft-
ware, router, repeaters, switches, grids, and/or others. Proto-
cols such as Fibre Channel, Fibre Channel over Ethernet
(FCoE), iSCSI, and so forth may be used in networks 480 and
490. Switch 440 may utilize a protocol associated with both
networks 480 and 490. The network 490 may interface with a
set of communications protocols used for the Internet 460
such as the Transmission Control Protocol (TCP) and the
Internet Protocol (IP), or TCP/IP. Switch 450 may be a TCP/
1P switch.

Client computer systems 410a-410c¢ are representative of
any number of stationary or mobile computers such as desk-
top personal computers (PCs), servers, server farms, work-
stations, laptops, handheld computers, servers, personal digi-
tal assistants (PDAs), smart phones, and so forth. Generally
speaking, client computer systems 410a-410c¢ include one or
more processors comprising one or more processor cores.
Each processor core includes circuitry for executing instruc-
tions according to a predefined general-purpose instruction
set. For example, the x86 instruction set architecture may be
selected. Alternatively, the Alpha®, PowerPC®, SPARC®,
or any other general-purpose instruction set architecture may
be selected. The processor cores may access cache memory
subsystems for data and computer program instructions. The
cache subsystems may be coupled to a memory hierarchy
comprising random access memory (RAM) and a storage
device.

Each processor core and memory hierarchy within a client
computer system may be connected to a network interface. In
addition to hardware components, each of the client computer
systems 410a-410c may include a base operating system
(OS) stored within the memory hierarchy. The base OS may
be representative of any of a variety of operating systems,
such as, for example, MS-DOS®, MS-WINDOWS®,
OS/2®, UNIX®, Linux®, Solaris®, AIX®, DART, or other-
wise. As such, the base OS may be operable to provide various
services to the end-user and provide a software framework
operable to support the execution of various programs. Addi-
tionally, each of the client computer systems 410a-410¢ may
include a hypervisor used to support virtual machines (VMs).
As is well known to those skilled in the art, virtualization may
be used in desktops and servers to fully or partially decouple
software, such as an OS, from a system’s hardware. Virtual-
ization may provide an end-user with an illusion of multiple
OSes running on a same machine each having its own
resources and access to logical storage entities (e.g., LUNs)
built upon the storage devices 476a-476m within each of the
data storage arrays 420a-4206.

Each of the data storage arrays 420a-4205 may be used for
the sharing of data among different servers, such as the client
computer systems 410a-410c. Each of the data storage arrays
420a-4205 includes a storage subsystem 470 for data storage.
Storage subsystem 470 may comprise a plurality of storage
devices 476a-476m. Each of these storage devices 476a-
476m may be an SSD. A controller 474 may comprise logic
for handling received read/write requests. A random-access
memory (RAM) 472 may be used to batch operations, such as
received write requests. In various embodiments, when
batching write operations (or other operations) non-volatile
storage (e.g., NVRAM) may be used.

The base OS 432, the volume manager 434 (or disk array
manager 434), any OS drivers (not shown) and other software
stored in memory medium 430 may provide functionality
providing access to files and the management of these func-
tionalities. The base OS 432 may be a storage operating
system such as NetApp Data ONTAP® or otherwise. The
base OS 432 and the OS drivers may comprise program

10

20

25

40

45

50

60

8

instructions stored on the memory medium 430 and execut-
able by processor 422 to perform one or more memory access
operations in storage subsystem 470 that correspond to
received requests. The system shown in FIG. 4 may generally
include one or more file servers and/or block servers.

Each of the data storage arrays 420a-4205 may use a net-
work interface 424 to connect to network 480. Similar to
client computer systems 410a-410c, in one embodiment, the
functionality of network interface 424 may be included on a
network adapter card. The functionality of network interface
424 may be implemented using both hardware and software.
Both a random-access memory (RAM) and a read-only
memory (ROM) may be included on a network card imple-
mentation of network interface 424. One or more application
specific integrated circuits (ASICs) may be used to provide
the functionality of network interface 424.

In addition to the above, each of the storage controllers 474
within the data storage arrays 420a-4205 may support storage
array functions such as snapshots, replication and high avail-
ability. In addition, each of the storage controllers 474 may
support a virtual machine environment that comprises a plu-
rality of volumes with each volume including a plurality of
snapshots. In one example, a storage controller 474 may
support hundreds of thousands of volumes, wherein each
volume includes thousands of snapshots. In one embodiment,
a volume may be mapped in fixed-size sectors, such as a
4-kilobyte (KB) page within storage devices 476a-476m. In
another embodiment, a volume may be mapped in variable-
size sectors such as for write requests. A volume ID, a snap-
shot ID, and a sector number may be used to identify a given
volume.

One or more mapping tables may be used to map /O
requests from each of the client computer systems 410a-410c¢
to physical locations in storage devices 476a-476m. A first
mapping table may include a mapping of a virtual address
space of a given client to a logical address space represented
by block numbers. A second table may map the block num-
bers to the physical address space of storage devices 476a-
476m. In some embodiments, the information in the first and
second mapping tables may be combined into a single map-
ping table. A “physical” pointer value may be read from the
second mapping table during a lookup operation associated
with a given virtual address and a corresponding block num-
ber. This physical pointer value may then be used to locate a
physical location within the storage devices 476a-476m. It is
noted the physical pointer value may be used to access
another mapping table within a given storage device of the
storage devices 476a-476m. Consequently, one or more lev-
els of indirection may exist between the physical pointer
value and a target storage location.

In another embodiment, the mapping table(s) may com-
prise information used to deduplicate data, such as dedupli-
cation table related information. The information stored in the
deduplication table may include mappings between one or
more calculated hash values for a given data component and
a physical pointer to a physical location in one of the storage
devices 476a-476m holding the given data component. In
addition, a length of the given data component and status
information for a corresponding entry may be stored in the
deduplication table.

Referring now to FIG. 5, a block diagram of one embodi-
ment of a fractal-based layout of blocks is shown. As used
herein, the term “fractal” may be defined as an object in which
the parts or individual components of the whole are self-
similar. In other words, a “fractal” is a self-similar geometric
shape produced by an equation that undergoes repeated itera-
tive steps or recursion. The block numbering shown in FIG. 5

US 9,405,486 B2

9

is generated using a fractal-based pattern to number the
blocks within the regions 102A-D of the storage devices. In
some embodiments, the regions 102A-D may be referred to as
a single region.

As shown in FIG. 5, the numbering of blocks is based on a
Hilbert space-filling curve. Generally speaking, a “space-
filling curve” is a curve whose range contains the entire
two-dimensional addess space region. In other words, a
“space-filling curve” may be defined as a function that maps
a two-dimensional space into a one-dimensional space. A
space-filling curve passes through every block in the two-
dimensional grid of regions 102A-D so that each block is only
visited once. There are many different types of space-filling
curves, one of which is the Hilbert space-filling curve.

The Hilbert space-filling curve is a continuous fractal
space-filling curve first described by German mathematician
David Hilbert in 1891. The Hilbert space-filling curve defines
an algorithm which may be utilized for mapping a particular
block number to a location within the region. One advantage
of the Hilbert space-filling curve is that it does a fairly
adequate job of preserving locality. The Hilbert space-filling
curve may take a path that traces through all the points in a
two-dimensional square grid in such a way that each step in
the path moves between neighbors in the grid.

In other embodiments, other space-filling curves may be
utilized. For example, in another embodiment, a Morton
space-filling curve may be utilized to generate block numbers
for a storage system. Depending on the embodiment, the
space-filling curve providing the best clustering with respect
to the specific storage system may be utilized. The blocks,
which correspond to a logical address space, may be num-
bered sequentially starting at the beginning of the space-
filling curve and incrementing at each step of the curve until
reaching the end of the curve within the overall region.

Blocks may be labeled using the Hilbert space-filling curve
such that consecutive blocks are laid out across multiple
storage devices in a fractal pattern. The mapping shown in
FIG. 5 allows for the number of storage devices used for an
1/O request to increase as the size of the /O request increases,
but not as fast as would be the case using the layout shown in
FIG. 3. Requests of three consecutive blocks require accesses
to at a maximum of two different devices, while requests of
four consecutive blocks usually require accesses of two dif-
ferent devices, though occasionally they may require a third
device (e.g., blocks 5-8). Requests of five blocks require
accesses of at most three different drives. Generally speaking,
the number of storage devices accessed by an 1/O request does
not scale linearly as the number of blocks per /O request
increases. Instead, the number of storage devices accessed by
an I/O request of ‘N’ blocks will on average be the square root
of' N, as opposed to ‘N’ storage devices for a layout based on
the parallel approach of FIG. 3.

In one embodiment, the layout shown in FIG. 5 may be
generated during a configuration phase of the storage sub-
system. This layout may be stored in a mapping table or other
file. In another embodiment, the layout shown in FIG. 5 may
be generated in real-time as blocks are utilized to process /O
requests to the storage subsystem. In such an embodiment, a
particular block number may be mapped to a location on-the-
fly based on a fractal pattern, such as the Hilbert space-filling
curve. The most recently used block number that was utilized
by a previous I/O request may be stored in a table or file.
When a new [/O request is received, the algorithm for the
fractal-based space-filling curve may start from this most
recently used block number and generate new block numbers
for the number of blocks that are required for the new 1/O
request.

10

15

20

25

30

35

40

45

50

55

60

65

10

In a further embodiment, instead of using the next unused
block number, the algorithm may jump to a further point on
the fractal-based space-filling curve. In such an embodiment,
to perform a jump to a further point on the curve, a formula
may be utilized for calculating the (x, y) location of a desti-
nation block in the region given the location along the one
dimensional path (i.e. index). Formulas for calculating these
locations are well known to those skilled in the art. For
example, if the last used block number is two, and a new [/O
request is received by the storage subsystem, then block num-
bers may be generated starting at a block number higher than
three. For example, new block numbers may be generated
starting with a block number of six. In this way, the algorithm
may jump to a future point on the space-filling curve, skip-
ping over one or more blocks that are in the path of the
space-filling curve. This is for illustrative purposes only, and
any other subsequent block number may be utilized for the
1/O request. At some future point, the block numbers that
were skipped over during this request may be utilized by an
1/O request.

Turning now to FIG. 6, ablock diagram of one embodiment
of'a mapping table 625 and corresponding storage devices is
shown. Table 625 shows mappings of virtual addresses (VA)
to curve block numbers (CBN) and logical addresses (LA).
Theblocks of devices 605-620 may be numbered from O to 15
using a Hilbert space-filling curve as described above in
regard to FIG. 5. In addition, each block includes a logical
address associated with the location of the block within its
respective storage device. For example, block ‘0’ is located at
address ‘02’ within device 605, block ‘1’ is located at address
‘09’ within device 610, and so on. The addresses shown in
FIG. 6 are for illustrative purposes only, and in other embodi-
ments, other types and representations of addresses may be
utilized. For example, in another embodiment, the logical
address shown in mapping table 625 may only contain a
pointer to a given device, and the device may determine the
address for a specific curve block number according to its
own mapping mechanisms and tables.

Mapping table 625 may be stored in any of various loca-
tions (e.g., cache, RAM, memory medium) within a storage
subsystem, such as storage subsystem 470 (of FIG. 4). Map-
ping table 625 may be utilized to perform address translations
from a virtual address space to the physical address space of
storage devices 605-620. For example, if an I/O request were
received for virtual address (VA) 0x010002000, then this
virtual address may correspond to curve block number (CBN)
0, which is mapped to address ‘02’ of storage device 605. In
one embodiment, the entries and addresses of mapping table
625 may be generated during a configuration phase of the
storage subsystem. In another embodiment, the entries and
addresses of mapping table 625 may be generated in real-
time. In other embodiments, some of the entries and
addresses may be generated on setup and some of the entries
and addresses may be generated in real-time.

It is noted that the mapping table 625 shown in FIG. 6 is
only one possible embodiment of a mapping table which may
be used to perform address translations from virtual to the
logical address space of storage devices 605-620. In other
embodiments, mapping table 625 may be organized in a dif-
ferent manner with other numbers of columns and with other
types of information. Furthermore, the storage devices 605-
620 may also have internal mapping mechanisms. For
example, the logical address shown in mapping table 625 may
be mapped by the storage device to a physical location within
the device. Over time, this internal mapping between logical
address and physical location may change.

US 9,405,486 B2

11

Turning now to FIG. 7, one embodiment of an 8x8 region
is shown. The region shown in FIG. 7 is an 8x8 square, and the
columns in this layout represent storage devices, or sections
within storage devices, and the rows represent blocks within
each storage device (or section). The region may also be
referred to as a two-dimensional grid, wherein the first dimen-
sion is a number of blocks and the second dimension is the
number of storage devices. In the embodiment shown in FI1G.
4, there are eight storage devices (or regions) and eight blocks
per storage device. A Hilbert space-filling curve was utilized
to generate the layout of the square in FIG. 4. In other embodi-
ments, other space-filling curves (e.g., Morton) may be uti-
lized. In some embodiments, the columns in the region may
actually correspond to a portion of a storage device.

The Hilbert space-filling curve may be utilized with any 2*
by 2* square region, wherein k is a positive integer greater
than one. For example, 16x16 squares, 32x32 squares, 64x64
squares, and so on, may utilize a block numbering scheme
based on the Hilbert space-filling curve. In other embodi-
ments, other types of space-filling curves (e.g., Morton) may
be utilized to generate block numbers for the blocks of the
region.

Referring now to FIG. 8, one example of an algorithm for
generating a space-filling curve is shown. In the example
shown, the code in block 805 may perform a mapping from a
two-dimensional grid to a one-dimensional curve. The code
in block 810 may perform a mapping from a one-dimensional
curve to a two-dimensional grid. The code assumes the two-
dimensional grid is a square divided into n-by-n cells, for an
‘n’ equal to a power of two, the square uses integer coordi-
nates, with (0,0) in the lower-left corner, with (n-1, n-1) in
the upper-right corner, and a distance ‘d’ that starts at 0 in the
lower-left corner and goes to (n*~1) in the lower-right corner.
The rotate function, which is utilized by the code in blocks
805 and 810, is shown in block 815. However, other ways of
expressing a space-filling curve algorithm are possible and
are contemplated. In one embodiment, the code shown in
blocks 805-815 may be utilized for striping data across stor-
age devices.

Referring now to FIG. 9, a block diagram of the numbering
otf’blocks within a 4x4 square region is shown. The 4x4 square
region in FIG. 9 is numbered based on the Hilbert space-
filling curve algorithm and region 825 (of FIG. 8). The path
taken by the curve begins in the bottom right corner of the 4x4
square region, and so this block is numbered ‘0’. The block
number is incremented for each subsequent block that is
traversed by the path, such that the block above the ‘0’ block
is numbered ‘1°, the block to the left of the 1’ block is
numbered ‘2’, and so on. The block in the top right corner of
the 4x4 square region, which is the last block traversed by the
Hilbert space-filling curve of FIG. 8, is numbered ‘15°. The
4x4 square region of FIG. 9 may be flipped in the horizontal
direction and rotated clockwise by 90 degrees to match the
block numbering layout of the 4x4 square region shown in
FIG. 5. In various embodiments, the block numbering layout
generated by a Hilbert space-filling curve may be flipped in
various directions and/or rotated by multiples of 90 degrees.

Turning now to FIG. 10, one embodiment of a method for
generating a layout of block numbers for a region utilizing a
space-filling curve algorithm is shown. In one embodiment, a
data storage controller, such as storage controller 474 (of FI1G.
4), may be configured to operate in accordance with method
1000. For purposes of discussion, the steps in this embodi-
ment are shown in sequential order. It should be noted that in
various embodiments of the method described below, one or
more of the elements described may be performed concur-

10

15

20

25

30

35

40

45

50

55

60

65

12

rently, in a different order than shown, or may be omitted
entirely. Other additional elements may also be performed as
desired.

In the embodiment shown, method 1000 begins by deter-
mining the size of the region which is used to for storage in a
storage subsystem (block 1005). For the purposes of this
discussion, it will be assumed that the region is a 2* by 2*
square region, wherein k is a positive integer greater than one.
For other types of regions, such as non-square regions, other
methods may be utilized which will be discussed further
below. After block 1005, an algorithm may be utilized to
generate a space-filling curve (e.g., a Hilbert curve) for tra-
versing the plurality of blocks of the region (block 1010). In
one embodiment, the algorithm shown in FIG. 8 may be
utilized to generate the Hilbert space-filling curve. In one
embodiment, the algorithm may be executed by a processor
(e.g., processor 422) within a data storage array (e.g., data
storage array 42056). In other embodiments, the algorithm
may be executed by any of various other types of hardware
and/or software. Next, the blocks may be numbered based on
the path taken by the Hilbert space-filling curve through the
region (block 1015).

After block 1015, the block numbers may be stored in a
mapping table (block 1020). In one embodiment, the map-
ping table may be stored in a storage subsystem, such as
storage subsystem 470 (of FIG. 4) of data storage array 4205.
The mapping table may be utilized for fulfilling 1/O requests
received from a client. For example, a client may generate an
1/O request to store a file in array 4205. If the size of the file
is such that it corresponds to four storage blocks, the first four
blocks of the region may be utilized (0-3) for storing the four
portions, and the mapping of the blocks to the specific storage
devices 476a-m may be retrieved from the mapping table to
determine where to store the four portions of the file. Subse-
quent files may be stored in the remaining blocks, starting
with block 4, which is the next unused block. This example is
for illustrative purposes only, and other files may be broken
up into any number of portions, depending on the file size and
the size of the portions and blocks. In one embodiment, the
block-size may be the same for all blocks within the storage
subsystem. In other embodiments, the block-size may vary
within the storage subsystem and/or within a single storage
device.

Referring now to FIG. 11, a block diagram of a rectangular
region is shown. The region shown in FIG. 11 is arectangular-
shaped 11x16 region. The 11 columns of the region corre-
spondto 11 storage devices in the physical address space. The
16 rows correspond to the 16 blocks that may be stored in each
storage device. The region 1100 is not a square region with a
side length of 2%, and therefore one or more alternate schemes
for numbering the blocks may be utilized. In one embodi-
ment, the overall region 1100 may be split up into smaller
regions that form squares with a side length of 2. It is noted
that in some embodiments, the value of ‘k’ may vary for the
smaller regions that are created by splitting up the overall
region 1100. As shown in FIG. 11, the overall region 1100
may be partitioned into multiple regions, including the region
1205, which is a square of length eight (2%, with k=3). The
overall region 1100 may also be partitioned into regions 1110
and 1115, and regions 1110 and 1115 may be combined to
form a square of length eight.

Generally speaking, any overall region that is not a 2% by 2%
square may be broken up into one or more smaller sized
sub-regions. The overall region may be divided into two or
more sub-regions, with at least one of the sub-regions chosen
such that it is the largest 2% by 2* square that fits in the overall
region. Then, other sub-regions from the overall region may

US 9,405,486 B2

13

be combined, if possible, to make one or more other 2* by 2¢
squares. These 2 by 2* square sub-regions, either original 2*
by 2% square sub-regions or a combination of two or more
sub-regions that forms a 2* by 2* square sub-region, may have
their blocks numbered according to a fractal-based space-
filling curve. Any leftover sub-region that cannot be com-
bined to form a 2* by 2* square sub-region may be numbered
according to various methods depending on the embodiment,
one of which is described in further detail below.

The techniques described above may be used for regions of
various sizes. For example, in another embodiment, a region
may span 16 drives, and 64 blocks may be stored on each
drive, forming a 64x16 region. The 64x16 region may be
broken up into four 16x16 regions, and then each 16x16
region may be mapped using a fractal-based space-filling
curve. In other embodiments, other sizes of regions may be
partitioned. The technique used for partitioning involves first
breaking up the region into the largest square of 2* side that
fits into the region. If more than one of these squares fits into
the overall region, then the region may be split up into as
many squares that fit.

Also, if two or more pieces of the region may be combined
to form a square, then the region may be partitioned into these
two or more pieces. For some regions, there may be a non-
square shaped leftover region that is unable to be combined
with any other piece to form a square. For this leftover non-
square sub-region, the sub-region may be centered within a 2*
by 2% square, and then the square may be numbered using the
fractal-based space-filling curve. In various embodiments,
the 2% by 2* square may be a different size than the previously
used 2* by 2* squares. After the square has been numbered, the
rectangular leftover region, which fills only a portion of the
square, may be renumbered. First, the leftover region may be
“removed” from the overall square and then renumbered. The
renumbering is accomplished via the following steps: First,
look for the smallest number in the leftover region. This
smallest number will be renumbered as ‘0’. It is possible this
smallest number was already ‘0’. Then, the next smallest
number in the leftover region will be identified, and this next
smallest number will be renumbered as ‘1°. Again, it is pos-
sible the number of this block was already ‘1°. These steps
may continue, wherein the next higher original number is
identified, and then this block may be renumbered with the
next sequential integer in the renumbering scheme. For
example, if the leftover region contains 20 blocks, then these
blocks may be renumbered from 0 to 19 using the steps
described above. Prior to the renumbering scheme, if this
leftover region were in an overall 8x8 square (containing 64
blocks), then the blocks may have been numbered from any-
where between 0 to 63.

Turning now to FIG. 12, a block diagram of one embodi-
ment of a layout of a leftover sub-region is shown. Sub-region
1120 is the leftover rectangular region from overall region
1100 of FIG. 11. To generate block numbers for the blocks of
sub-region 1120, sub-region 1120 may be centered within
8x8 square region 1205. Then, region 1205 may be numbered
using a Hilbert space-filling curve, as is shown in FIG. 13. As
is shown in FIG. 13, region 1205 is numbered in an identical
fashion to the 8x8 region shown in FIG. 6. In other embodi-
ments, other types of space-filling curves may be utilized to
generate a fractal layout of block numbers.

After region 1205 is mapped using the Hilbert space-filling
curve, the leftmost and rightmost columns of region 1205
may be discarded, as is shown in FIG. 14. The leftmost and
rightmost columns of region 1205 include an ‘X’ in the bot-
tom of each of the squares indicating that these squares are not
mapped to blocks on devices. Then, the blocks of region 1120

10

15

20

25

30

35

40

45

50

55

60

65

14

may be renumbered according to the scheme previously
described. The numbers in the top of each block are the
original numbers used in the mapping of the entire region
1205. The numbers in the bottom of each block are the final
block numbers for the blocks of region 1120, as is shown in
FIG. 15. The block numbers shown in FIG. 15 may be utilized
for mapping blocks to the physical address space of the under-
lying storage devices. In one embodiment, the block numbers
shown in FIG. 15 may be generated prior to performing the
actual mapping of blocks to the storage device and stored for
later use rather than being generated on-the-fly on an as-
needed basis.

The techniques disclosed in FIGS. 11-15 for laying out
block numbers for a rectangular region may be applied to
other sizes of rectangular regions. In general, a rectangle may
be of'size A by B with M total blocks, wherein A, B, and M are
integers. The rectangle may be partitioned into one or more
square regions, wherein each square region has a side length
equal to 2%, wherein k is a positive integer greater than one. If
the rectangle is partitioned into more than one square region,
the value of k may vary for the different square regions. The
block numbers for the square region(s) may be numbered by
utilizing a space-filling curve (e.g., Hilbert space-filling
curve). Any leftover region from the original rectangle may
be positioned within a square of side length equal to 2* and the
square may be numbered according to a space-filling curve.
Then the rectangle portion of the square, corresponding to the
leftover region, may be renumbered according to an ascend-
ing sequential order of the block numbers generated for the
square.

Turning now to FIG. 16, another embodiment of a rectan-
gular region centered within a square region is shown. Region
1100 is shown in FIG. 16, which is the same 11x16 region
shown in FIG. 11. An alternate scheme for laying out block
numbers in a fractal pattern for a rectangular region is shown
in FIG. 16. In one embodiment, region 1100 may be centered
within the 16x16 square 1605. In other embodiments, region
1100 may be placed at any location within square 1605. There
are two extra columns on the leftside of region 1100 and three
extra columns on the rightside of region 1100 which may be
attached to region 1100 to make up the overall 16x16 square
1605. In other embodiments, a region may have more col-
umns than rows (i.e., more storage devices than blocks). In
such an embodiment, the region may be centered within a 2*
by 2* square such that there are empty rows on top and/or on
bottom of the region within the square. The example shown in
FIG. 16 is illustrative only, and various other sizes of regions
may be centered within a 2* by 2% square in a similar manner

In one embodiment, block numbers may be generated for
region 1605 using the Hilbert space-filling curve. Other types
of space-filling curves may be utilized in other embodiments.
Then, the extra two columns on the left-side and the extra
three columns on the right-side of region 1605 may be dis-
carded, and region 1100 may be renumbered using the
scheme illustrated in FIGS. 14 and 15. The renumbering
scheme for region 1100 is shown in FIG. 17.

Turning now to FIG. 18, one embodiment of a method for
mapping block numbers within a region is shown. In one
embodiment, a data storage controller, such as storage con-
troller 474 (of FIG. 4), may generally operate in accordance
with method 1800. For purposes of discussion, the steps in
this embodiment are shown in sequential order. It should be
noted that in various embodiments of the method described
below, one or more of the elements described may be per-
formed concurrently, in a different order than shown, or may
be omitted entirely. Other additional elements may also be
performed as desired.

US 9,405,486 B2

15

The method 1800 may begin by determining the size of the
region which is used to represent the physical address space
of'a storage subsystem (block 1805). The region may include
any number of storage devices and any number of blocks per
storage device. In one embodiment, the region may be repre-
sented by a two-dimensional grid, with a first dimension
corresponding to the number of blocks and a second dimen-
sion corresponding to the number of storage devices. Gener-
ally speaking, I/O requests may access the storage subsystem
on a block-by-block basis, and so therefore, two or more
storage devices of the storage subsystem may be partitioned
into blocks which may be used to process the /O requests.

If the region is a 2* by 2* square (conditional block 1810),
then the block numbers within the region may be mapped
utilizing a fractal-based space-filling curve (block 1815). In
one embodiment, the fractal-based space-filling curve may be
a Hilbert space-filling curve. In other embodiments, other
space-filling curves may be utilized.

If the region is not a 2% by 2* square (conditional block
1810), then the region may be positioned within a 2% by 2*
square (block 1820). The size of the 2* by 2* square may be
chosen such that the square is large enough to accommodate
the region. In one embodiment, the region may be centered
within the 2% by 2% square. In other embodiments, the region
may be placed at any location within the 2* by 2 square. Next,
numbers may be generated for the blocks of the 2¢ by 2%
square utilizing a fractal-based space-filling curve (block
1825). Then, the blocks outside of the centered region may be
discarded (block 1830). In other words, the blocks that fall
outside of the original region may be removed from consid-
eration during the subsequent renumbering process. Next, the
blocks of the centered region may be renumbered from O to
M-1, wherein M is the number of blocks in the centered
region (block 1835). The renumbering may be based on the
original numbering of the 2% by 2% square. The block numbers
may be stored in one or more mapping tables for use in
processing 1/O requests directed to the storage subsystem
(block 1840).

In various embodiments, one or more mapping tables may
be used for I/O redirection or translation, deduplication of
duplicate copies of user data, volume snapshot mappings, and
so forth within a storage subsystem. In one embodiment, the
mapping tables may be stored in the storage devices 476a-
476m (of FIG. 4). Furthermore, copies of portions or all of a
given mapping table may be stored in RAM 472, in buffers
within controller 474, in memory medium 430, and in one or
more caches within or coupled to processor 422.

The mapping tables may also include data fields including
data such as a pointer used to identify or locate data compo-
nents stored in storage subsystem 470. It is noted that in
various embodiments, the storage subsystem may include
storage devices (e.g., SSDs) which have internal mapping
mechanisms. In such embodiments, the pointer may not be an
actual physical address per se. Rather, the pointer may be a
logical address which the storage device maps to a physical
location within the device. Over time, this internal mapping
between logical address and physical location may change.

It is noted that the above-described embodiments may
comprise software. In such an embodiment, the program
instructions that implement the methods and/or mechanisms
may be conveyed or stored on a non-transitory computer
readable medium. Numerous types of media which are con-
figured to store program instructions are available and include
hard disks, floppy disks, CD-ROM, DVD, flash memory,
Programmable ROMs (PROM), random access memory
(RAM), and various other forms of volatile or non-volatile
storage.

10

15

20

25

30

35

40

45

50

55

60

65

16

Invarious embodiments, one or more portions of the meth-
ods and mechanisms described herein may form part of a
cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services
according to one or more various models. Such models may
include Infrastructure as a Service (IaaS), Platform as a Ser-
vice (PaaS), and Software as a Service (SaaS). In IaaS, com-
puter infrastructure is delivered as a service. In such a case,
the computing equipment is generally owned and operated by
the service provider. In the PaaS model, software tools and
underlying equipment used by developers to develop soft-
ware solutions may be provided as a service and hosted by the
service provider. SaaS typically includes a service provider
licensing software as a service on demand. The service pro-
vider may host the software, or may deploy the software to a
customer for a given period of time. Numerous combinations
of'the above models are possible and are contemplated.

Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the follow-
ing claims be interpreted to embrace all such variations and
modifications.

What is claimed is:

1. A computing system comprising:

a plurality of storage devices; and

a data storage controller, wherein the data storage control-

ler is configured to:

receive a request to store a consecutive collection of
data; and

store the group of data within a region using a fractal
pattern, wherein the region spans two or more storage
devices of the plurality of storage device.

2. The computing system as recited in claim 1, wherein the
region is represented by a two-dimensional grid, wherein a
first dimension is measured in blocks, and wherein a second
dimension is measured in storage devices.

3. The computing system as recited in claim 1, wherein the
data storage controller is configured to map virtual block
numbers to physical locations in the region using a mapping
table.

4. The computing system as recited in claim 3, wherein the
mapping table is initialized using a space-filling curve.

5. The computing system as recited in claim 1, wherein the
region is a square with a side length equal to 2%, where k is a
positive integer greater than one.

6. The computing system as recited in claim 1, wherein the
region is a rectangle of size A by B with M blocks, wherein A,
B, and M are integers greater than zero, and wherein the data
storage controller is further configured to:

center the region within a square of side length equal to 2%,

wherein k is a positive integer greater than one, wherein
the square includes N blocks, wherein N is an integer
greater than zero, and wherein at least one of A or B is
less than 2*.

7. The computing system as recited in claim 1, wherein the
region is a rectangle of size A by B with M blocks, wherein A,
B, and M are integers greater than zero, and wherein the data
storage controller is further configured to:

partition the region into one or more square regions,

wherein each square region has a side length equal to 2%,
wherein k is a positive integer greater than one, and
wherein k may vary for the one or more smaller square
regions.

8. The computing system as recited in claim 7, wherein a
leftover region remains after partitioning the region into one
or more square regions, wherein the leftover region is a rect-

US 9,405,486 B2

17

angle of size C by D with P blocks, wherein C, D, and P are
integers greater than zero, and wherein the data storage con-
troller is further configured to:

center the leftover region within a square of side length

equal to 2/, wherein j is a positive integer greater than
one, wherein the square includes N blocks, wherein N is
an integer greater than zero, and wherein at least one of
Cor D is less than 2.

9. A method for use in a computing system including a
plurality of storage devices, the method comprising:

receiving a request to store a consecutive collection of data;

and

storing the group of data within a region using a fractal

pattern, wherein the region spans two or more storage
devices of the plurality of storage device.

10. The method as recited in claim 9, wherein the region is
represented by a two-dimensional grid, wherein a first dimen-
sion is measured in blocks, and wherein a second dimension
is measured in storage devices.

11. The method as recited in claim 9, wherein the data
storage controller is configured to map virtual block numbers
to physical locations in the region using a mapping table.

12. The method as recited in claim 11, wherein the map-
ping table is initialized using a space-filling curve.

13. The method as recited in claim 9, wherein the region is
a square with a side length equal to 2%, and where k is a
positive integer greater than one.

10

15

20

18

14. The method as recited in claim 9, wherein the region is
a rectangle of size A by B with M blocks, where A, B, and M
are integers greater than zero, the method further comprising:

centering the region within a square of side length equal to

2% wherein k is a positive integer greater than one,
wherein the square includes N blocks, where N is an
integer greater than zero and a least one of A or B is less
than 2%,

15. A non-transitory computer readable storage medium
comprising program instructions, wherein said program
instructions are executable to:

receive a request to store a consecutive collection of data;

and

store the group of data within a region using a fractal

pattern, wherein the region spans two or more storage
devices of the plurality of storage device.

16. The non-transitory computer readable storage medium
as recited in claim 15, wherein the region is represented by a
two-dimensional grid, wherein a first dimension is measured
in blocks, and wherein a second dimension is measured in
storage devices.

17. The non-transitory computer readable storage medium
as recited in claim 15, wherein the data storage controller is
configured to map virtual block numbers to physical locations
in the region using a mapping table.

#* #* #* #* #*

